

Traitement de M33 Acquisition : Nicolas OUTTERS Nicolas KIZILIAN

➔ Prétraitement déjà réalisé.

2. Traitement

→ Retrait du gradient :

Utilisation du process sur chacune des couches.

Idem pour chacune des couches.

→ Gestion du bruit

Utilisation de TGVDenoise avec la méthode « Philippe Bernhard ». Création d'un masque de gris 50%

2	PixelMath	жX
Expressions		\$
RGB/K:	0.5	•3
G:		•63
B:		•3
A:		•3
Symbols:		•3
	✓ Use a single RGB/K expression Expression Editor	
Destination		*
Lower bound: Upper bound:	 Single threaded Use 64-bit working images Rescale result 0.000000000000 1.0000000000000 Replace target image Ocreate new image 	
Image Id:	50pc	•3
Image width:	:As target>	
Image height:	:As target>	
Color space:	<same as="" target=""></same>	
	Alpha channel	
Sample format:	<same as="" target=""></same>	
L D		ЪЖ

Puis application de ce masque à l'image (sur chaque couche).

0		TCVDanaica	_
8	<u>8</u>	DCR/K made CI5 L*z*b* made	
	RGB/K Chromina	ance	
		Apply	
	Strength:	1.20000000 1.20	- 0 🗘
	Edge protection:	0.0000020 2.00	-7 🌲
	Smoothness:	5.0000000 5.00	- 0 🗘
	Iterations :	500 🗢	
		Automatic convergence	
	Convergence:	0.00400000 4.00	-3 👻
	Local Support		*
C	ouche OIII		

Application du process TGVDenoise

8	TGVDenoise	≭ ×
	● RGB/K mode ○ CIE L*a*b* mode	
RGB/K Chromina	ance	
	Apply	
Strength:	1.20000000 1.20	- 0 🗘
Edge protection:	0.00000013 1.30 =	-7 🌲
Smoothness	5.0000000 5.00	0 🌲
lterations	500 🗘	
	Automatic convergence	
Convergence:	0.00400000 4.00	-3 🌲
Local Support		¥
K		

Couche Ha

	TGVDenoise	× ×
•) RGB/K mode 🔿 CIE L*a*b* mode	
RGB/K Chrominand	ce	
	Apply	
Strength:	1.20000000 1.20 =	- 0 🗘
Edge protection:	0.00000565 5.65	-6 🌲
Smoothness:	5.00000000 5.00	- 0 🗘
Iterations :	500 🗢	
	Automatic convergence	
Convergence: (0.00400000 4.00	-3 🌲
Local Support		¥
		DDX
Couche Clear		

3	TGVDenoise	≭ ×
	● RGB/K mode ○ CIE L*a*b* mode	
RGB/K Chromina	ince	
	Apply	
Strength:	1.2000000 1.20	- 0 🗘
Edge protection:	0.0000040 4.00	-7 🜲
Smoothness:	5.0000000 5.00	- 0 🗘
Iterations :	500 🖨	
•	Automatic convergence	
Convergence:	0.00400000 4.00	-3 🌲
Local Support		¥

Couches R,G,B (paramètres identiques).

→ Création de la luminance

Je crée deux images de luminance grâce au script AIP-SHO avec les couches Clear, Ha, OIII : Une luminance en mode screen, une luminance en mode darken.

SHO AIP v1.0.10 (gbr)	SHO AIP v1.0.10 (gbr)
Windo w Previe w Control 🗶	Windo w Previe w Control 🗶
— L.Bourgon & P. Bernhard — Copyright © 2013 —	— L.Bourgon & P. Bernhard — Copyright © 2013 —
New Picture	New Picture
Mixing with Rescall	Mixing with Rescall
Backg Auto Egualise	Backg Auto Egualise
Auto STF	Auto STF
✓ Optimise STF	✓ Optimise STF
Mixing Luminance	Mixing Luminance
Master 1: Clear % 100	Master 1: Clear 👻 % 100
Master 2: Ha 🛛 🗸 % 75	Master 2: Ha 🗸 % 75
Master 3: OIII 🔷 % 65	Master 3: OIII 🔷 % 65
Create L with master 1 + 2 method : Darken	Create L with master 1 + 2 method : Darken
Create L with master 1 + 2 + € method : Screen ▼	Create L with master 1 + 2 + € method : Darken ▼
Mixing L SHONRVB	Mixing L SHONRVB
Pictures Selection	Pictures Selection ¥
Layer to mixing SHONRVB	Layer to mixing SHONRVB
Load Save 🗸 OK	Load Save 🗸 OK

LinearFit sur mon image de luminance Darken avec comme référence ma luminance Screen :

2	LinearFit	≖ x
Reference image:	Lum_screen	
Reject low:	0.000000	
Reject high:	0.920000	
K I		

Puis je crée un rangemask :

Je fais une montée d'histogramme sur ce masque :

		HistogramTransforma	tion 🖬 🛣
	Gray 1:5 Ha <*ne – 🖬 🕂		
Gray 1:5	irange_mask <*ne w*>		
	승규는 이번 영상에 가지 않는 것이 없다.		
			¥ 1 1 1
	and the second se		
*			4
	1	8-bit (256) • Area •	
		range_mask	
		R G B RGB/K A	────────────────────────────────────
		Shadows: 0.00000000 0.%0	.0000
		Highlights: 1.00000000 0, %0	.0000
		Midtones: 0.00053446	Auto Clip Setup 🔻
		. L 🛛 O	□ D 🗸 Ж
		Scree	
		П К.	
		Q 🕀 G 🗶	Ī
		🛠 Q в 🗶	Ī
	그는 이상에서 가장하지 않는 것이 같이 많이 했다.	· · · · · ×	Ţ
	물건이 전에 많은 것 같아요? 것이 많이 많이 많이 했다.		

Je l'applique à ma luminance « screen », puis je combine mes deux luminances avec PixelMath afin de faire ressortir les nébulosités:

	PixelMath	x x
Expressions		2
RGB/K:	.8*Lum_darken+.2*Lum_screen	E
G:	the second s	6
B:		63
A:		•3
Symbols:		63
	✓ Use a single RGB/K expression	100
	Expression Editor	
Destination		*
Lower bound: Upper bound:	 ✓ Generate output Single threaded Use 64-bit working images Rescale result 0.0000000000000 1.0000000000000 ● Replace target image ○ Create ne w image 	
Image Id:	<auto></auto>	6
Image width:	:As target> 🗘	
Image height:	:As target> 👙	
Color space:	<same as="" target=""></same>	
	Alpha channel	
Sample format:	<same as="" target=""></same>	

Comparaison avant/après mixage des luminances :

Ma Luminance est créée.

→ Création de la couche bleue

Pour la couche bleue, j'ai décidé de mixer le canal bleu et la couche OIII.

Application de LinearFit sur la couche OIII en utilisant le canal bleu en référence.

•	SHO AIP	v1.0.10 (gbr)	×
Windo w Pre	vie w Control		\$
			— L.Bourgon & P. Bernhard — Copyright © 2013 —
			Ne w Picture
			Mining with Deceall
			Mixing with Rescall
			Backg Auto Egualise
			✓ Auto STF
			✓ Optimise STF
Mixing Lumi	nance		\$
Master 1:	Blue		▼ % 100 ○
Master 2:	OIII		▼ % 100 ○
Master 3:			▼ % 100 ○
	Create L with master 1 + 2	method :	Screen 💌
	Create L with master 1 + 2 +:	method :	Darken 💌
Mixing L SH	ONRVB		Ŧ
Pictures Se	lection		¥
Layer to mi	xing SHONRVB		¥
	Load Save		🗸 ОК

Puis création de la « nouvelle » couche bleue :

➔ Création de l'image RGB

J'applique un LinearFit sur les canaux R et G en prenant mon nouveau bleu (qui sera désormais nommé simplement « bleu ») en tant que référence :

2	L	inearFit	× ×
Reference image:	Blue_new		
Reject low:	0.000000	0	
Reject high:	0.920000		
N	i.		

Puis création de l'imag RGB :

_	- T -		channelcombination	<u> </u>
Stagent		Color Space RGB CIE XYZ HSV CIE L*a*b* HSI CIE L*c*h*	Channels / Source Images Image: Red Image: Green Image: Green Image: Source Images Image: Source Images	

Puis DBE afin de traiter le gradient résiduel :

\mathbf{Z} Dynamic Background Extraction $\mathbf{Z} \times \mathbf{X}$
Selected Sample: 1 of 33
Sample #: 1 ₩ 🖊 🕨 🗭 🗲 🕂 🕂
Anchor X: 3816 Symmetries
Anchor Y: 3750 H V D
Radius: 15 Axial: 6 🗘 🗍
R/K: 0.000127
G: 0.000130
B: 0.000124
Fixed
C (1.24 (2.55 (2.64))
CE204945923
Wr: 0.769
Wg: 0.807
Wb: 0.761
Model Parameters (1)
Tolerance: 0.500
Shadows relaxation: 3.000
Smoothing factor: 0.250 Unweighted
Model Parameters (2)
Sample Generation
Default sample radius: 15 Resize All
Samples per row: 10 Generate
Minimum sample weight: 0.750
Sample color:
Bad sample color:
Model Image 🗸 🗸
Target Image Correction
Correction: Division
Normalize
Discard background model Beplace target image
Identifier: <auto></auto>
Sample format: Same as target

➔ Traitement de l'image RGB

Neutralisation du fond de ciel :

Calibration des couleurs :

	•	ColorCalibration 📼 🗙
	White Reference	\$
	Reference image:	RGB->Previe w02
	Lower limit:	0.0000000
	Upper limit:	0.9000000
	Region of Int	terest
	Width:	0 + Height: 0 + From Preview
	Structure De	tection
Preview01	Structure layers:	5
	Noise layers:	1 -
Preview02	Manual White	e Balance
	Green:	1.0000
	Blue	1 0000
	Background Refe	
	Reference image:	BGB->Preview01
	Lower limit:	0.0000000
	Upper limit:	0.1000000
	Region of Int	terest
	Left:	0 🗘 Top: 0 🗘
	Width:	0 🗘 Height: 0 🗘 From Preview
		Output background reference mask
	L II	D D X

Je peaufine ensuite les couleurs avec les couleurs sélectives de photoshop

→ Traitement de l'image de Luminance

LinearFit sur la luminance en prenant le couche bleue comme référence :

Z	LinearFit	≍ ×
Reference image:	Blue_new	
Reject low:	0.000000	
Reject high:	0.920000	
K B		

Déconvolution :

Création de la PSF

			G	DynamicF	SF ^{e w <*⊓}	e –	0 +	×		× ×
	Ch	В	A	сх	су	sx	sy	FWHMx	FWHMy	r
Moffat		0.000136	0.000682	3405.24	2976.27	4.03	3.66	3.06px	2.77px	10.90
T 🗙 3 0	Θ									groundNe
Moffat		0.000135	0.000166	3374.79	2730.45	4.61	4.15	3.97px	3.58px	0.90
* ★ 31	0									rCalibratio
Moffat		0.000134	0.001997	3443.89	2519.02	2.53	2.28	2.60px	2.34px	0 0.90 se
▼★ 32	Θ									
Moffat		0.000164	0.002009	3401.89	2272.73	3.41	3.00	2.74px	2.41px	10.88tch
▼★ 33	0								Hist	ogramTrar
Moffat		0.000169	0.004576	2868.90	1068.89	3.31	2.96	2.62px	2.34px	0.89
▼★ 34	Θ								SNC	R .
Moffat	0	0.000148	0.006510	2580.82	860.61	2.79	2.53	2.61px	2.3/px	0.90 eSelection
Maffat	U	0.000142	0.001050	2414 21	750 71	2.20	2.00	2.6264	2.2004	0.00
Morrat		0.000142	0.001050	2414.21	/52./1	2.50	2.08	2.03px	2.38µX	0.90
									Morr	obologicalT
Star 31 of 31/1 se	lected					⊟ —		0 0		N <mark>⊋</mark> tis ⊵ }e [™]
PSF Model Functions									Loca	lHisto g ran
🖌 Auto 🖉 G	aussiar		Moffat [_ Moffat10	Moffat8					esTransfo
Moffat6 M	offat4		Moffat25	Moffat15	🗌 Lorentzia	n				
🗌 Circular PSF 🗹 Si	gned a	ngles								us wavelet
Star Detection										narpM æ k
Image Scale									Pixel	Math 🍹
× ×										ЪЖ

Je crée ensuite un StarMask :

	StarMask ;	× ×
Noise threshold:	0.10000	_
Working mode:	Star Mask	-
Scale:	3	
Structure Growt	h	\$
Large-scale:	2	
Compensation:	2	
Mask Generatio	n	*
Smoothness:	11 Aggregate Binarize Contours Invert	
Mask Preproces	sing	*
Shadows:	0.00000	
Midtones:	0.50000	
Highlights :	1.00000	-0
Truncation:	1.00000	=0
Limit:	1.00000	-0
		ж

Puis je clone l'image en l'applique en tant que masque sur ma luminance.

Enfin, j'applique la déconvolution :

🔢 Deconvolution 🕿	×
PSF 🗶	
Parametric PSF Motion Blur PSF External PSF	
View Identifier	
Algorithm 25 × 15	
Algorithm: Regularized Richardson-Lucy	
Iterations: 100 🌩	
Target: Luminance (CIE Y)	
✓ Deringing	
Global dark: 0.0030	
Global bright: 0.0000	_
✓ Local deringing	
Local support: star_mask	1
Local amount: 0.70	
✓ Wavelet Regularization	
Noise model: Gaussian 💌 Wavelet layers: 2 🖨 B3 Spline (5) 💌	,
Noise threshold Noise reduction	
	D
2: 2.00 0.70	
3: 1.00 0.70	
4: 1.00 0.70	
5: 1.00 0.70	
Convergence: 0.0000 Disable	d
Dynamic Range Extension 🗧	
K II (D)	ĸ

Clone de l'image et utilisation de ce clone en tant que masque pour traiter la galaxie, puis LHE

L	calHistogramEqualization	× ×
Kernel Radius:	56	
Contrast Limit:	2.0	
Amount:	1.000	
Histogram Resolution:	8-bit (256) 💌 🗹 Circular Kernel	

➔ Création de l'image HaOIIIRGB

Application de la luminance sur l'image RGB

	LRGBCombination	≖ ×
Channe	ls / Source Images	\$
🗹 L	Luminance	
🗌 R	<auto></auto>	
G	<auto></auto>	
В	<auto></auto>	
Target:	<no selected="" view=""></no>	-
Channe	l Weights	¥
Transfe	r Functions	\$
Lightn Satura	ess: 0.500	
Chro	ominance Noise Reduction	¥
	•	

Saturation du rouge pour faire apparaitre les zones HII

Création d'un rangemask afin de corriger les couleurs du halo galactique :

Création d'un rangemask pour traiter le cœur de la galaxie :

Puis LHE

LocalHistogramEqualization	×	x
Kernel Radius: 38	 	
Contrast Limit: 1.5	 	
Amount: 0.260	 	
Histogram Resolution: 8-bit (256) 💌 🗹 Circular Kernel		
	D	ж

Création d'un masque sur les grosses étoiles :

Saturation des étoiles :

Courbes générales pour le contraste.

Dernier traitement de couleurs et de luminosité sur le cœur de la galaxie avec photoshop

Properties		≫∥ ≖≣
Preset: Custom		+
Cyan:	+42	%
Magenta:	+48	%
Yellow: Black:	+56	96
Relative	Absolute	
x= •	୍ର	â

Traitement terminé

