

La Rosette (NGC 2237) Fabien

1. Prétraitement

1.1 Introduction

Nous partons de 3 jeux d'images, prises par les membres du club, avec des instruments différents.

- Des images en Ha, prises avec une lunette de 80mm
- Des images RVB, prises avec un APN et une lunette de 66mm
- Des images RVB, prises avec un C14 hyperstar. Compte tenu de la focale du C14 hyperstar, il y a 4 jeux d'images, chacun photographiant ¼ de la nébuleuse, qu'il faudra re-combiner.

Le traitement que j'ai utilisé est résumé dans ce diagramme :

1.2 Prétraitement des images Ha

- Les images sont calibrées, alignées avec le script **BathPreprocessing**.
- Intégration des images avec l'outil **ImageIntegration**.
- Suppression du gradient de fond de ciel avec l'outil DBE :

- Transformation par histogramme pour créer un masque de luminance à fort contraste :

- J'applique ce masque à l'image, je l'inverse pour ne sélectionner le fond de ciel, et j'applique une légère réduction de bruit :

M		MultiscaleMedianTransform	x x
	Algori	thm: Multiscale median transform	-
Layer	s		\$
• Dy	adic	🔿 Linear: 🚺 🌲 La	ayers: 8 💌
Layer	Scale	Parameters	
1	1 :	S(t=10.0000, s=0.50, a=3.0000)	
1	2 2	2 S(t=5.0000, s=0.50, a=1.0000)	
¥ 3	3 4	S(t=3.0000, s=0.50, a=0.7000)	
~	4 8	S(t=1.5000, s=0.50, a=0.3000)	
× :	5 10	5 S(t=1.0000, s=0.50, a=0.1000)	
~ (5 3.	2 S(t=0.6000, s=0.50, a=0.0000)	
~	7 64	4 S(t=0.3000, s=0.50, a=0.0000)	105
~ 8	3 12	S(t=0.1000, s=0.50, a=0.0000)	^
× F	R 250	5	•
	etail La	/er 1/8	\$
	Bia	s: 0.000	
	loise Re	duction	*
-	ionacine		-
T	hreshol	d: 10.000	0
	Amour	it: 0.50	
	Adaptiv	e: 3.0000	
	inear M	ask	*
		E	
Dynai	mic Kar	ge Extension	*
Target		Layer Preview:	
RGB/	K comp	onents 💌 No layer previ	ew 🔻
	0		
	0		

- Je crée maintenant un masque d'étoiles avec l'outil StarMask,
- Avec l'outil **DynamicPSF**, je sélectionne une bonne poignée d'étoiles, et je crée une PSF de référence,
- J'utilise cette PSF pour appliquer un traitement de **déconvolution** à l'image, en protégeant les étoiles avec mon masque. Je joue avec les paramètres suivants pour essayer de trouver une image bien piquée, mais naturelle quand même :

1	Deco	onvolution	≖ ×
PSF			\$
Parametric PSF	Motion Blur PSF	External PSF	
View Identifier			
PSF			
			11 x 11
Algorithm			\$
Algorithm:	Regularized Richard	dson-Lucy	•
Iterations:	во 🗘		
Target:	Luminance (CIE Y)	v	
Deringing			\$
Global dark:	0.0300		
Global bright:	0.0000		
	 Local deringing 		
Local support:	star_mask		
Local amount:	0.70		0
✓ Wavelet Regu	larization		\$
Noise model:	Gaussian 💌	Wavelet layers: 2 🌲	B3 Spline (5) 🔻
Noise threshold		Noise reduction	
1: 3.00		1.00	
2: 2.00		0.70	
3: 1.00		0.70	
4: 1.00		0.70	
5: 1.00		0.70	
Convergence:	0.0000		Disabled
Dynamic Range E	xtension		¥

- Je transforme l'image en mode non linéaire, avec l'outil **HistogramTransformation**, que je règle simplement en utilisant simplement la STF.
- J'applique une légère accentuation de l'image au travers du masque de luminance :

			MultiscaleMedianTransform		 : >
	4	Algorith	m: Multiscale median transform		-
Lay	ers				*
• •)yad	dic () Linear: 0 🌲 🛛 Lay	ers: 4	•
Lay	er	Scale	Parameters		
4	1	1			
~	2	2	+0.100		
~	3	4	+0.100		
~	4	8			
~	R	16			
~	Det	ail Laye	er 1/4		*
	Det	ail Laye Bias	er 1/4 : 0.000		 *
	Det	ail Laye Bias ise Redu	er 1/4 : 0.000		 * •3
	Det Noi Thi	ail Laye Bias ise Redu reshold:	er 1/4 : 0.000		 * €3 *
	Det Noi Thi	ail Laye Bias ise Redu reshold: mount	er 1/4 : 0.000		 * 83 *
	Noi Thi A	ail Laye Bias ise Redu reshold mount daptive	er 1/4 : 0.000		 *
	Noi Thr A Ac	ail Laye Bias ise Redu reshold mount daptive ear Mas	er 1/4 : 0.000		*
Dyn	Noi Thi A Lini	ail Laye Bias ise Redi reshold mount daptive ear Mas ic Rang	er 1/4 : 0.000		 *
Dyn Targe	Noi Thi A Lini et:	ail Laye Bias ise Redi reshold mount daptive ear Mas ic Rang	er 1/4 : 0.000		 *
Dyn Targu RGE	Noi Thi A Lin am et: 3/K	ail Laye Bias ise Redu reshold mount daptive ear Mas ic Rang compo	er 1/4 : 0.000 uction : 1.000 : 0.0000 : 0.0000 : 0.0000 : Layer Preview: nents No layer preview		 *

- Je procède à un renforcement local des contrastes avec l'outil **LocalHistogramEqualization**, sans trop forcer (la valeur Amount est réduite à 0.14) :

- J'applique le script **DarkStructureEnhance** au travers du masque de luminance, pour concentrer le traitement sur le cœur de la nébuleuse.

Traitement HDRMultiscaleTransform, en cochant la case luminance :

_

E H	IDRMultiscaleTransform	× ×
Number of layers: Overdrive:	6 🗘 Number of iterations: 1 🗘 0.000 🚇 Median transform	Inverted
Scaling function:	B3 Spline (5)	•
	To lightness Preserve hue Lightness mask	
Deringing		\$
Small-scale: Large-scale:	0.000 Contraction of the second secon	
Midtones Balance		¥
N H		DBX

- Dernière suppression de bruit des basses lumières au travers d'un masque de luminance.

Ajustement final du contraste avec l'outil Courbes

- Sauvegarde de l'image pour la suite du traitement

1.3 Pré-traitement des images RVB (APN+lunette)

- Les images sont calibrées, alignées avec le script **BathPreprocessing**.
- Intégration des images avec l'outil ImageIntegration.
- Application du script CanonBandingReduction
- Traitement du bruit (fort) avec l'outil MultiscaleMedianTransform
- Suppression du gradient de fond de ciel avec l'outil DynamicBackgroundExtraction :

- Converstion en mode non linéaire avec l'outil HistogrammeTransformation et le réglage de la STF.
- RangeMask

- Application du masque inversé à l'image pour sélectionner le fond de ciel et application d'une très forte réduction de bruit sur le fond de ciel.

- Suppression du masque et application d'une réduction de bruit, plus lègère, sur l'ensemble de l'image.
- Suppression de la dominante verte avec l'outil SCNR réglé par défaut.

1.4 Pré-traitement des images RVB (C14 hyperstar)

- Je traite les 4 quarts d'image individuellement :
 - o Calibration, alignement avec le script BatchPreprocessing
 - o Crop
 - AutomaticBackgroundExtraction
 - o Suppression de bruit avec MultiscaleMedianTransform, réglé léger :

644		MultiscaleMedianTransform	×х			
	Algorith	nm: Multiscale median transform	v			
Layers			*			
• Dya	dic (Linear: 0 4 Layers: 8	Ŧ			
Layer	Scale	Parameters				
✓ 1	1	S(t=4.7000, s=0.50, a=3.0000)				
✓ 2	2	S(t=2.6000, s=0.50, a=1.0000)				
✓ 3	4	S(t=1.7000, s=0.50, a=0.7000)				
✓ 4	8	S(t=0.6000, s=0.50, a=0.3000)				
✓ 5	16	S(t=0.3000, s=0.50, a=0.1000)				
✓ 6	32	S(t=0.2000, s=0.50, a=0.0000)				
7	64	S(t=0.1000, s=0.50, a=0.0000)				
~ 8	128	S(t=0.1000, s=0.50, a=0.0000)	L D			
LV R	256		-			
✓ De	tail Lay	er 7/8	*			
	Bias	: 0.000	- 63			
V No	oise Red	uction	*			
TH	reshold	: 0.1000				
1	Amount	. 0.50				
Д	daptive	: 0.0000 😝				
Lir	near Ma	sk	¥			
Dynan	nic Rang	e Extension	*			
Target:		Layer Preview:				
RGB/K	RGB/K components No layer preview					
	0		BX			

- Conversion en mode non linéraire avec l'outil HistrogramTransformation réglé par défaut avec la STF.
- o Sauvegarde de l'image au format .TIF 16 bits
- Pour assembler les images, nous avons rencontré des difficultés avec les logiciels PixInsight et Photoshop. L'assemble a bien marché en utilisant le logiciel AutoPano (<u>http://www.kolor.com/fr/autopano/</u>)

• De retour dans PixInsight avec mon image assemblée, l'applique un traitement de réduction de la dominante verte (outil SCNR réglé par défaut).

2.1 Recombinaison des images RVB

- Je dispose maintenant de 2 images RVB non-linéaires à re-combiner entre elles. Il faut donc que je commence par les réaligner les unes par rapport aux autres avec l'outil **StarAlignement**.
- Je sépare ensuite le canal de Luminance des images RVB.
- Avec **PixelMath**, j'additionne 20% de la luminance de l'APN avec 80% de la luminance du C14.

	PixelMath	≭ ×
Expressions		\$
RGB/K:	0.8*L1+0.2*L2	8
G;		8
В;		8
A:		8
Symbols:		8
	Use a single RGB/K expression	
	Expression Editor	
Destination		¥

- Je fais un Crop de l'image pour couper les bords noirs de cette image composite
- ____J'applique l'outil HDRMultiscaleTransform :

E F	IDRMultiscaleTransform	× ×
Number of layers: Overdrive:	B Number of iterations: 1 0.000 Image: Comparison of the second sec	Inverted
Scaling function:	B3 Spline (5) To lightness Preserve hue Lightness mask	 ▼
Deringing		\$
Small-scale: Large-scale:	0.000 0.250 Output deringing maps	
Midtones Balance		Ŧ
K II		ПРЖ

- Je crée un masque d'étoiles :

R	StarMask	× ×
Noise threshold:	0.10000	
Working mode:	Star Mask	•
Scale:	2	
Structure Growth		\$
Large-scale:	2	
Small-scale:	1 🌲	
Compensation:	1	
Mask Generation		\$
Smoothness:	10 Aggregate Binarize Contours Invert	
Mask Preprocessi	ng	\$
Shadows:	0.00000	j
Midtones:	0.84000	
Highlights:	1.00000	
Truncation:	1.00000	
Limit:	1.00000	0
		DDX

- Que j'utilise pour faire une réduction de la taille des étoiles en appliquant l'outil **MorphologicalTransformation** sur l'image au travers du masque d'étoiles :

Mor	hologic	alTran	sformatio	on z	×
Morphologic	al Filter				\$
Operator:	Morpho	logical S	election		-
Interlacing:	1				
Iterations:	5				
Amount:	0.30		-0		_
Selection:	0.30	-	-0		
Structuring E	ement				*
		Size:	7 (49 elem	nents)	-
		Way:	1 of 1		•
			S 🔡 🖸		•
				I	Ø
			₩ 🖪 🛛	•	•
1 🛛 🔛	1 🛛 🔛 Manage				ge
<unnamed></unnamed>					
Thresholds					¥
				DB	ж

- Ensuite, j'applique masque de luminance sur l'image, et j'effectue une légère accentuation des hautes lumières :

			MultiscaleMedianTransform			× ×
	,	Algorith	m: Multiscale median transform			-
Laye	ers					*
• D	yad	dic () Linear: 🚺 🌲 La	ayers: [4	•
Lay	er	Scale	Parameters			
1	1	1				
~	2	2	+0.100			
~	3	4	+0.100			
~	4	8				
~	R	16				
	Det	ail Laye	r 1/4			*
		Bias:	0.000			• 🔁
	No	ise Redu	uction			*
	Th	reshold:	1.0000			
	A	mount	1.00			-0
	A	daptive	0.0000			
	Lin	ear Mas	k			¥
Dyn	am	ic Rang	e Extension			Ŧ
-	-	1				
Targe	et:		Layer Preview:			_
RGB	RGB/K components No layer preview					
N I		0		C	3 0	X

- Dernière retouche du contraste avec l'outil Courbes

J'ai maintenant à ma disposition :

- D'une image de luminance issue du traitement des images Ha
- D'une image RVB issue du traitement et de l'assemblage des images du C14
- D'un image de luminance issue de la combinaison des images de l'APN avec celle du C14.

Je procède à l'assemblage final :

- Avec l'outil **StarAlignement**, je m'assure que mes images sont bien alignées sur l'image Ha de référence.
- Je combine la couche RVB avec la luminance APN+C14, avec l'outil LRGBCombination.
- J'utilise le script **HARVB-AIP** de Laurent Bourgon pour recombiner l'image couleur avec l'image Ha. Je choisis de forcer un peu la valeur de Ha à 66%.

HaRVB-AIP Script v1.0.5 (gbr)	
HaRVB-AIP v1.0.5 (gbr) — Mixing HA with RGB ((AIP Method) L.Bourgon
Pictures Selection	
Image Ha (Gray mode)	HA2_r
Frame RGB (RGB Mode)	Pano_registered_registered
% HAlpha in R Chanel : 66]
% R in HAlpha Chanel : 56]
Mixing Luminance	
Noise It:	3
Transfer Fonctions - Lightness: 0.500 =	Saturation: 0.500
Chroma Noise Reduction Sr	notherdWL: 4 ProtectedWL: 2 -
	OK 🔀 Cancel

- J'applique un dernier traitement **SCNR** pour supprimer les zones verdatres dans les coins, et un petit ajustement des **courbes** pour retoucher le contraste, et l'image est terminée.