

IC2118 Nicolas KIZILIAN

→ Sélection des images avec SubFrameSelector

J'ai décidé de ne pas sélectionner l'image représentant un pic en FWHM.

➔ Toutes les étapes de pré-traitement sont réalisées avec le script BathPreprocessing, les options sont laissées telles quelles. Je ne fais pas de correction cosmétique. L'intégration est réalisée à cette étape. Il y a certainement beaucoup mieux à faire au cours de cette étape.

*	Batch Preprocessing Script v1.40	×
Bias Darks Flats Lights		
 Sorciere_120sec_2x2_R_frame5_a Sorciere_120sec_2x2_R_frame5_a Sorciere_120sec_2x2_R_frame5_a Sorciere_120sec_2x2_R_frame7_a 	Clear Remove Selected Invert Selection	A script for calibration and alignment of light frames Copyright (c) 2012 Kai Wiechen. Copyright (c) 2012-2014 Pleiades Astrophoto.
 Sorciere_120sec_2x2_R_frame8_a 	Cosmetic Correction	~
 ▼ Binning 1 ▼ Lum 	Apply	
 Sorciere_300sec_1x1_L_frame10 	Template icon: <none></none>	
 Sorciere_300sec_1x1_L_frame11 Sorciere 300sec_1x1_L_frame12 	DeBayer	Ortige
 Sorciere_300sec_1x1_L_frame14 	Bayer drizzle	Options
 Sorciere_300sec_1x1_L_frame15 	Bayer/mosaic pattern: RGGB	CFA images 🔽 Up-bottom FITS
Sorciere_300sec_1x1_L_frame16	DeBayer method: VNG	Optimize dark frames Use master bias
Sorciere_Sousec_1x1_L_frame17 Sorciere 300sec 1x1 L frame18	Image Registration	Constant rejection maps Set master dark Export calibration files Use master flat
Sorciere_300sec_1x1_L_frame2_a.fit Sorciere_300sec_1x1_L_frame3_a.fit	Generate drizzle data	Output file suffix:
Sorciere_300sec_1x1_L_frame4_a.fit	-> Registration parameters	Registration Reference Image
 Sorciere_300sec_1x1_L_frame5_a.fit Sorciere_300sec_1x1_L_frame6_a.fit 	Image Integration	D:/Concours Albireo/Nebuleuse_Sorciere_CCD/Ne
Sorciere_300sec_1x1_L_frame7_a.fit Sorciere_200sec_1v1_L_frame7_a.fit	Apply	Output Directory
Sorciere_300sec_1x1_L_frame9_a.fit	→ Integration parameters	euse_Sorciere_CCD/Nebuleuse_Sorciere_CCD/BPP
Add Files Add Bias Add Darks	+ Add Flats + Add Lights Add Custom	Diagnostics

2. Traitement

➔ Je crée un clone de chaque couche (L,R,G,B) qui me servira d'image support pour réduire le bruit sur chaque couche en mode linéaire.

➔ J'applique le process TGVDenoise sur chaque couche, en utilisant comme image support le clone créé à l'étape précédente. Le paramètre Edge protection est adapté à chaque couche. (NB : J'ai certainement trop insisté sur la réduction du bruit à cette étape, donnant à l'image un aspect « grumeleux »).

2		TGVDenoise	Ē	× ×
	• RGB/K mo	de 🔘 CIE L*a*b* mode		
RGB/K Chromina	nce			ColorCalibration
	Apply			ChannelMatch
Strength:	0.05000000	5.00	0	-2 🗘
Edge protection:	0.00001650	1.65		HistogramTransformatio
Smoothness:	2.00000000	2.00		SNCR "
lterations:	100 🔹	convergence		RangeSelection "
Convergence:	0.00400000	4.00	[Starklask "
✓ Local Support				MorphologicalTran Aom
	Preview			HDRMultiscaleTransform
Support image:	light_FILTER_	Lum_BINNING_1_integration_	clone	
Noise reduction:	0 🗘			💽 LocalHistogramEqualiza
Midtones:	0.50000		-0	• • • • • • • • • • • • • • • •
Shadows:	0.00000	0		Deconvolution 🛛 🛛
Highlights:	1.00000			CurvesTransformation

→ Je transforme chaque couche en non-linéaire.

→ Combinaison des différentes couches. La valeur « Saturation » a été abaissée afin d'augmenter la saturation en couleurs de l'image résultante.

-	LRGBCombination	×
Channe	ls / Source Images	*
✓ L	light_FILTER_Lum_BINNING_1_integration	
🗹 R	light_FILTER_Red_BINNING_2_integration	
🗹 G	light_FILTER_Green_BINNING_2_integration	
🗹 B	light_FILTER_Blue_BINNING_2_integration	
Target:	<no selected="" view=""></no>	-
Channe	l Weights	Ŧ
Transfer	Functions	*
Light Satura	ness: 0.500	
Chr	ominance Noise Reduction	Ŧ
	•	ж

→ Légère réduction de l'image pour supprimer les bordures engendrées par l'intégration.

→ Réduction du gradient avec DBE en mode soustraction.

→ J'utilise l'image de luminance sur laquelle je pousse les contrastes afin de l'utiliser en tant que masque.

➔ En utilisant ce masque, j'applique des modifications sur les courbes. Une fois pour le fond de ciel, une fois pour l'objet.

→ Toujours avec le masque, j'utilise le process LocalHistogramEqualization pour faire ressortir les contrastes sur les nébulosités.

💽 I	ocalHistogramEqualization	×	×
Kernel Radius:	214		_
Contrast Limit:	1.5		_
Amount:	0.500		_
Histogram Resolution:	8-bit (256) 💌 🗹 Circular Kernel		
N O		B	ж

→ Je crée un masque d'étoiles. Pour cela, j'utilise la fonction Statistics. Je relève la valeur Median et je la reporte dans le Midtones du StarMask, puis j'applique ce masque sur l'image.

11	Statistics 🛪				
Image18					
Normalized Real	[0,1] 🔻 🗹 Scier	ntific notation 🗹 N	Normalized 🗌 Unclipped	📃 🔧	
	R	G	B		
count (%)	99.99998	100.00000	100.00000		
count (px)	8228632	8228634	8228634		
mean	1.420312e-001	1.411245e-001	1.453130e-001		
median	1.249081e-001	1.221514e-001	1.243496e-001		
stdDev	7.034928e-002	7.092611e-002	7.689069e-002		
avgDev	3.754094e-002	3.601029e-002	4.357271e-002		
MAD	1.954389e-002	1.498327e-002	2.178601e-002		
minimum	2.434760e-004	2.133982e-002	2.530667e-003		
maximum	9.999164e-001	9.685363e-001	9.916859e-001		
				×	

	StarMask	≖ x
Noise threshold:	0.10000	
Working mode:	Star Mask	-
Scale:	4	
Structure Growth		*
Large-scale:	2	
Small-scale:	1	
Compensation:	2	
Mask Generation		\$
Smoothness:	16 🗘	
	Aggregate	
	Binarize	
	Contours	
	lnvert	
Mask Preprocessi	ng	*
Shadows:	0.00000	
Midtones:	0.13000	
Highlights:	1.00000	
Truncation:	1.00000	
Limit:	1.00000	
N	•	ъж

→ J'applique une légère déconvolution aux étoiles.

	Deconv	olution	× ×
PSF			± × ±
Parametric PSF	Motion Blur PSF Ext	ernal PSF	C I Inverted
StdDev: Shape:	0.80 0.80 0.81 0.80	ansform Ə	
Aspect ratio: Rotation:	0.00 To lightne	ss [_] Preserve hue mask	5x5
Algorithm			* 🔹
Algorithm:	Regularized Richardson	-Lucy	* -
Iterations:	10 🤤		
Target:	Luminance (CIE Y)	•	
Deringing	Large-scale:	2 *	¥
Wavelet Reg	ularization Small-scale:	1	\$
Noise model:	Gaussian 💌 💌 Way	velet layers: 2 🜲	B3 Spline (5) 💌
Noise threshold	d Mask Generation	Noise reduction	
1: 3.00	Smoothness:	1.00	0
2: 2.00		0.70 egate	
3: 1.00	10000000	9 0 <u>979 a</u> rtze	
4: 1.00		0.76n	
5: 1.00		- 0.70°	
Convergence:	0.0000	00	Disabled
Dynamic Range	Extension Shadows:		¥
K 🖬	Midtones	0.13000	DDX

→ Puis je réduis leur taille avec MorphologicalTransformation.

	-		
Operator:	Erosic	on	(Minimum) 🔻
Interlacing:	1	*	
Iterations:	allers:	*	Number of iterations: 1
Amount:	0.50	0	000 0
Selection:	0.50		Median transfor
Structuring El	ement	8	3 Spline (5) 🔒
		-	Size: 5 (25 elements)
Demois			Way: 1 of 1
Midone Bil	-		
			2 🖸 🔽 💋 🖾
	-		💥 🖪 🛛 🖸 🕤
			Manage
1 🛛 🔛			Ivialiage

➔ Je désactive tous les masques et retouche une dernière fois les courbes pour donner plus de dynamique à l'image

→ Je tourne enfin l'image de 90° pour lui rendre son orientation la plus connue.

→ Je sauvegarde mon image finale en .tif 16 bits et en jpg avec la qualité maximale.

